Backward Euler Mixed FEM and Regularity of Parabolic Integrao-Differential Equations with Non-smooth Data
نویسندگان
چکیده
he nonFickian flow of fluid in porous media is complicated by the history effect which characterizes various mixing length growth of the flow, and can be modeled by an integro-differential equation. This paper studies a backward Euler scheme for the mixed finite element approximate solution of such problems with non-smooth initial data. A new regularity result is derived for the model problem, which can be used to design high order numerical schemes in time . AMS (MOS) subject classification: 90A09, 65K10, 65M12, 65M60
منابع مشابه
On Fully Discrete Galerkin Approximations for Partial Integro-differential Equations of Parabolic Type
The subject of this work is the application of fully discrete Galerkin finite element methods to initial-boundary value problems for linear partial integro-differential equations of parabolic type. We investigate numerical schemes based on the Padé discretization with respect to time and associated with certain quadrature formulas to approximate the integral term. A preliminary error estimate i...
متن کاملStability of two classes of improved backward Euler methods for stochastic delay differential equations of neutral type
This paper examines stability analysis of two classes of improved backward Euler methods, namely split-step $(theta, lambda)$-backward Euler (SSBE) and semi-implicit $(theta,lambda)$-Euler (SIE) methods, for nonlinear neutral stochastic delay differential equations (NSDDEs). It is proved that the SSBE method with $theta, lambdain(0,1]$ can recover the exponential mean-square stability with some...
متن کاملEfficient Numerical Solution of Dynamical Ginzburg-Landau Equations under the LorentzGauge
In this paper, a new numerical scheme for the time dependent GinzburgLandau (GL) equations under the Lorentz gauge is proposed. We first rewrite the original GL equations into a new mixed formulation, which consists of three parabolic equations for the order parameter ψ, the magnetic field σ= curlA, the electric potential θ=divA and a vector ordinary differential equation for the magnetic poten...
متن کاملStability and convergence of fully discrete Galerkin FEMs for the nonlinear thermistor equations in a nonconvex polygon
In this paper, we establish the unconditional stability and optimal error estimates of a linearized backward Euler–Galerkin finite element method (FEM) for the time-dependent nonlinear thermistor equations in a two-dimensional nonconvex polygon. Due to the nonlinearity of the equations and the non-smoothness of the solution in a nonconvex polygon, the analysis is not straightforward, while most...
متن کاملA Mixed Nite Element Discretization on Non-matching Multiblock Grids for a Degenerate Parabolic Equation Arising in Porous Media Ow
| Mixed nite element methods on multiblock domains are considered for nonlinear degenerate parabolic equations arising in modeling multiphase ow in porous media. The subdomain grids need not match on the interfaces, where mortar nite element spaces are introduced to properly impose ux-matching conditions. The low regularity of the solution is treated through time integration, and the degeneracy...
متن کامل